PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Samuel Ainsworth, Kendall Lowrey, John Thickstun, Zaid Harchaoui, Siddhartha Srinivasa

SUMMARY

Who needs RL? We learn policies by differentiating directly
through the physics engine. In addition, we offer significant

1e6 1e6
i e ® e e — —— Neural ODE solution [#e2 = —— CTPG (ours) i Fi . 2 - . . . 1: .
. _ _ ! : _ gure 4: Stages of training policies to control a differential drive robot to stabilize towards the ori-

p e rfo r m a n Ce I m p rove m e nts wo r kl n g I n CO nt l n u O u S t I m e ! E 01 e ;QRkSC)lIUtlon :imq I 5.0 9 q;o‘ e T (. ;QRksoIIutlon 5.0 5 gin. Each curve denotes the trajectory of the robot in the (x, y) plane under the respective

§ | 2aceome o _2.55 ; 201 kil 5 Sé) policies. A full video is available in the supplementary material.

o o

- : : — - - ' 0.0 - 0'"_'"""_":"_ : : . ‘"»0 0 ° ° ° ° °

0 200 400 600 800 1000 0 200 400 600 800 1000 Lea rning a pOIlcy with a phVSlCS engine

Neural ODEs aren’t sufficient

It turns out that Neural ODEs are not
sufficient for control experiments. The
backprop process in a Neural ODE leaves
open the question: “Where’d ya come
from? Where'd ya go?”

Iteration Iteration

Since optimal controllers will generally

Faster Policy Learning with Continuous-Time Gradients

Experiments

A differential drive “Roomba”-style robot:

Iteration 5000 Iteration 7500 Iteration 10000

Initial conditions Initial conditions Initial conditio
Euler BPTT — — — Euler BPTT — — — Euler BPTT
urs,

AR S— — CTPG (ours)

sof
¢4
ch ;
25} |
—e > - a0
NG /
//Y_/
00 /, /
s
e
25 - sk

s

o®

—e

implemented in DiffTaichi:

Research questlons N mxatad]ont EXt ad]om navigate the system to a fixed point, . = o] || = oo

Q1: Can we compute more accurate *;gé qu Q.- ,..., - Neural ODE’s “backtracking” technique *

estimates of the policy gradient? 2 R Moanii becomes unstable. o ooz ooy

Backprop. through time (BPTT) introduces oo :

um z ricZI arror iy q iscre(tizi R g) the robot , e S s bl The CTPG algo I‘Ithm. | | U odes to push the red harge to follo the blue dot (ght) We found that CTPG per.
trajectory under a policy. By computing a g g e e TN Instead, W€ propose maintaining a spllne. il i
more accurate estimate of the policy S . e , representation of the “forward” pass. This

gradient, can we optimize a policy in fewer
iterations?

Figure 1: Comparing policy gradient estimators. Neural ODE (Sec. 3.3) approximates continuous
trajectories, but accumulated error in its adjoint estimates. Neural ODE with checkpoint-
ing mitigates this error, but still accumulates error between checkpoints. Euler integration
with BPTT (Sec. 3.2) stores a discretized trajectory, which prevents error accumulation,
at the cost of a naive discretization. CTPG (Sec. 3.1) discretizes adaptively, and stores a
spline approximation of the trajectory to avoid error accumulation in the adjoint.

Q2: Can we compute policy gradient
estimates more efficiently? Suppose we
want a target level of accuracy for our
policy gradient estimates. We can achieve
the target accuracy by controlling the
discretization step-size for BPTT. By using
better numerical algorithms, can we
achieve the same accuracy with a smaller
computational budget?

Key idea: Rather than
computing an exact gradient
of a discretized system, we
instead compute an
approximate gradient of the
continuous system.

proves to be quite lightweight and enables
us to learn rich policies. Furthermore, we
show that BPTT is an instantiation of our
algorithm with specific choices for the
ODE solver and spline.

Algorithm 1 Continuous-Time Policy Gradients

Input: Differentiable physics simulator f(x,u), cost/reward function w(x, u), policy my(z), initial

state z(, and a numerical solver Solve|initial_conditions, dynamics|

Result: An approximation of aﬁ(gjé) 9)

Forward pass: (compute and store an approximation of the trajectory z : [0, 7] — R%)

z(-) < Solve [x(O) = W dflit) = f(a:,m;(a:))].

Backward pass: (compute an approximation of the Pontryagin adjoints « : [T, 0] — R9)

dJ d 0 d
a(-) < Solve {a(T) = T’ (:fot) = _a<t)T8§{t) — d;(l;)]
Return:
+0f Ou OwOom 0L (xo,0)

0 _
dt as an approximation of

ou 00

T
/0) Fua0 T 09

MuloCo cartpole, using finite differences:

3"

0 1x10° 2x10° 3x10° 4x10°

Number of function evaluations

Figure 6: Visualization of all states visited by a policy trained with BPTT (left) and CTPG (middle).

Fewer states are visited by CTPG during training leading to more efficient learning (right).
Error bars on the training plot show the 0.25-0.75 quantile range of 5 random seeds.

Controlling a quadrotor:

Loss

"NUmbeér of function evaluations
Figure 7: CTPG learns policies to stabilize the quadro-
tor towards the origin, while Euler integration
and BPTT-with the same number of function
evaluations—can not.

